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Abstract
Objectives: Myocardial infarction (MI) initiates a complex reparative response 
during which damaged cardiac muscle is replaced by connective tissue. While the 
initial repair is essential for survival, excessive fibrosis post-MI is a primary con-
tributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, 
there are no approved drugs for the prevention or the reversal of cardiac fibrosis. 
Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-
MI therapy, as distinct antifibrotic effects have recently been demonstrated.
Methods: At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD 
ligation. Mesalazine was administered orally at a dose of 100 μg/g body weight 
in drinking water. Fluid intake, weight development, and cardiac function were 
monitored for 28 days post intervention. Fibrosis parameters were assessed histo-
logically and via qPCR.
Results: Compared to controls, mesalazine treatment offered no survival ben-
efit. However, no adverse effects on heart and kidney function and weight de-
velopment were observed, either. While total cardiac fibrosis remained largely 
unaffected by mesalazine treatment, we found a distinct reduction of perivascular 
fibrosis alongside reduced cardiac collagen expression.
Conclusions: Our findings warrant further studies on mesalazine as a potential 
add-on therapy post-MI, as perivascular fibrosis development was successfully 
prevented.
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1   |   INTRODUCTION

Myocardial infarction (MI) is among the leading causes of 
mortality worldwide (Roth et al.,  2020). Despite tremen-
dous advances in the acute treatment, chronic heart fail-
ure remains a regular long-term complication (Talman & 
Ruskoaho, 2016). Ischemic injury results in the irreversible 
loss of cardiomyocytes, which only have limited capac-
ity for endogenous renewal (Gibb et al.,  2020; Talman & 
Ruskoaho,  2016). In order to prevent ventricular rupture, 
activated cardiac fibroblasts replace damaged myocardial 
tissue with a fibrotic scar (Gibb et al.,  2020; Humeres & 
Frangogiannis,  2019; Talman & Ruskoaho,  2016). During 
this process, fibroblasts undergo a phenotype conversion to-
wards their activated, highly secretory myofibroblast pheno-
type (Poulet et al., 2016). Although this reparative response 
is crucial upon acute injury, uncontrolled pan-ventricular 
fibroblast activation (Nagaraju et al., 2017) due to persistent 
TGFβ secretion, increased mechanic stress and inflamma-
tion (Humeres & Frangogiannis,  2019) lead to progressive 
interstitial and perivascular fibrotic remodeling and ulti-
mately heart failure (Fu et al., 2018; Rog-Zielinska et al., 2016; 
Talman & Ruskoaho,  2016). Consequently, cardiac fibrosis 
is an attractive pharmacological target for heart failure ther-
apies. However, as no currently available drugs can prevent 
or reverse cardiac fibrotic remodeling (Hoffmann et al., 2021; 
Zhao et al., 2020), effective antifibrotic drug therapy remains 
an unmet challenge. Compared to de novo drug develop-
ment, repurposing, that is, identification of new therapeutic 
uses for existing drugs, could offer several benefits, including 
reduced development time, lower costs, and potentially im-
proved safety profiles (Pushpakom et al., 2019). Mesalazine 
(5-aminosalicylic acid) is a drug primarily used to treat in-
flammatory bowel disease (Bantel et al.,  2000; Brogden & 
Sorkin, 1989; Hoffmann et al., 2021), inhibiting the produc-
tion of pro-inflammatory cytokines and chemokines by im-
mune cells and fibroblasts, as well as the activation of nuclear 
factor-kappa B (NFκB), which plays a key role in the inflam-
matory response (Bantel et al., 2000; Hoffmann et al., 2021). 
Previous research has identified distinct antifibrotic effects 
of mesalazine in the heart, the liver and the skin (Hoffmann 
et al., 2021; Künzel et al., 2021; Newe et al., 2021; Ramadan 
et al., 2018). Thus, mesalazine appears to be an ideal candi-
date for antifibrotic drug repurposing after MI, as it can po-
tentially target both the inflammatory and fibrotic pathways 
that contribute to fibrosis-driven cardiac dysfunction (Francis 
Stuart et al., 2016; Gibb et al., 2020). Furthermore, mesalazine 
has a well-established safety profile and has been approved 
for clinical use for decades (Beiranvand,  2021; Ye & van 
Langenberg,  2015), which could expedite its translation to 
clinical trials for the treatment of fibrosis. In the present study, 
we investigated the effects of systemic mesalazine treatment 
on cardiac fibrosis and heart function following MI.

2   |   METHODS

The sample size was not predetermined statistically due 
to the exploratory nature of this study. The animals were 
randomly allocated to the experimental groups. The inves-
tigators were blinded during outcome assessment.

2.1  |  Animals

Animal experiments were authorized by Landesdirektion 
Sachsen, Dresden, Germany, according to the German 
animal welfare regulations (TVV 64/2018) and complied 
with the ARRIVE guidelines as well as the guidelines 
from Directive 2010/63/EU on the protection of animals 
used for scientific purposes. For this study, male wild-type 
C57BL/6J mice were obtained from Janvier Laboratories, 
Saint Berthevin Cedex, France.

2.2  |  Myocardial infarction and 
subsequent mesalazine treatment

At the age of 8 weeks, left anterior descending coronary 
artery ligation or Sham operation were performed as de-
scribed previously (Klapproth et al., 2022). The following 
week, mice were monitored twice daily and subsequently 
three times a week. Mesalazine (100 μg/g body weight; 
Fisher Scientific GmbH, Schwerte, Germany, catalogue 
number: 11466846) was administered via the drinking 
water. Treatment started directly after MI induction. Con-
trol animals received solvent control (the volume of 20% 
hydrochloric acid equal to the mesalazine solution were 
added to the water). The pH of the drinking water was 
monitored and was between 5 and 6. Mice were weighed 
at baseline and once a week after MI to adjust drug dos-
age based on an estimated daily fluid intake of 4 mL. Since 
mesalazine precipitates in light, the water bottles were 
wrapped in tin foil. Echocardiography was performed at 
baseline, 14 days after MI and at the end of the experiment 
after 28 days. After the final echocardiography, animals 
were sacrificed by cervical dislocation. Subsequently, 
blood and tissue samples were collected. A schematic over-
view of the experimental procedure is given in Figure 1.

2.3  |  Echocardiography

Echocardiography was performed using a Vevo 3100 
system (FUJIFILM VisualSonics) as described pre-
viously (Klapproth et al.,  2022; Künzel et al.,  2021). 
Briefly, animals were anesthetized with 1.5% v/v isoflu-
rane. Surface ECG and body temperature were obtained 
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continuously. The chest area was shaved using depila-
tory cream. A MX400 transducer was positioned to ob-
tain 2D B-mode parasternal long and short axis views 
and M-mode view. Echocardiographic analysis was 
performed using the Vevo 2.1.0 software (FUJIFILM 
VisualSonics).

2.4  |  Histology and image analysis

Mid-ventricular heart sections were immediately em-
bedded in OCT Embedding Matrix (cat. no. 6478.1, Carl 
Roth GmbH + Co. KG, Karlsruhe, Germany) at −10°C. 
Sectioning and subsequent Sirius red staining were per-
formed by the histology facility at the Center for Mo-
lecular and Cellular Bioengineering (CMCB), Dresden. 
Images were acquired with a Keyence BZ-X710 micro-
scope (Keyence Corporation of America). Quantification 
of fibrotic areas in relation to the total tissue area was 
done using the FIJI 1.52n software (Newe et al.,  2021; 
Schindelin et al., 2012).

2.5  |  RNA isolation, cDNA 
synthesis and qPCR

SYBR green (cat. no. 1725270, Bio-Rad Laboratories 
GmbH) real-time PCR was performed in a CFX96 Touch 
Deep Well Real-Time PCR detection system (Bio-Rad 
Laboratories GmbH) to measure target gene expression. 
Ready-to-use primers were purchased from Bio-Rad (Bio-
Rad Laboratories GmbH, Munich, Germany, Table 1). Hy-
poxanthine phosphoribosyltransferase 1 (HPRT) was used 
as a housekeeping gene. Catalogue numbers of the prim-
ers used in this study are provided in Table 1. mRNA was 
isolated with a RNeasy Micro Kit (cat. no. 74004, Qiagen). 

cDNA was synthesized using the iScript Advanced cDNA 
synthesis kit (cat. no. 1725037, Bio-Rad Laboratories 
GmbH). CFX manager software (Bio-Rad Laboratories 
GmbH) was used for data analysis.

2.6  |  Statistical analysis

All graphic results are presented as mean ± SD. Graph 
Pad Prism v.9 (GraphPad Software) was used for statis-
tical analysis and figure preparation. All datasets were 
tested for normality. For comparisons of 3 groups, 1-way 
ANOVA or Kruskal-Wallis test were performed with 
Holm-Šídák or Dunn posttest, respectively. For survival 
analysis a Log-rank (Mantel-Cox) test was performed. 
p < 0.05 was considered statistically significant.

3   |   RESULTS

3.1  |  Mesalazine effects on survival and 
cardiac function after MI

Since we previously found that mesalazine exerts antifi-
brotic effects in vitro and in vivo by modulating ERK1/2-
SMAD2/3-, NFκB- and osteopontin-signaling (Hoffmann 
et al.,  2021; Künzel et al.,  2021; Newe et al.,  2021), we 
tested the effects of systemically administered mesalazine 
on cardiac function and fibrotic remodeling following MI. 
Kaplan–Meier analysis showed no significant difference 
in 28-day-survival of mesalazine-treated mice compared 
to MI and Sham controls (Figure  2A). Fluid intake as a 
surrogate for drug intake via the drinking water as well as 
weight development were monitored closely throughout 
the experiment and showed no significant differences be-
tween the three groups (Figure 2B,C). Compared to Sham, 

F I G U R E  1   Experimental protocol of the study. Male C57BL/6J mice were randomly allocated to the experimental groups: Sham 
(control, N = 8), MI (N = 11), MI and subsequent mesalazine treatment (N = 11; 100 μg mesalazine per g body weight). Echocardiography 
was performed at baseline, 14 and 28 days after MI/ Sham. At the end of the experiment, all remaining mice were sacrificed for subsequent 
histological and gene expression analysis. Images for this figure were modified from Servier Medical Art, licensed under a Creative 
Commons Attribution 3.0 Unported License. http://smart.servi​er.com/.

Mesalazine /
Solvent Control

Baseline
Echocardiography I

MI
Sham
Day 0

Echocadiography III
End of Experiment

Day 28

Echocardiography II

Day 14

http://smart.servier.com/
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echocardiography revealed impaired cardiac function in 
infarcted mice as determined by reduced ejection fraction 
(EF), reduced fractional area shortening (FAS), and dila-
tion of the left ventricle (LVID) 14 and 28 days post MI 
(Figure 2D–G; a comprehensive list of all echocardiogra-
phy results is provided in Table S1). Overall, mesalazine 
treatment did not significantly affect cardiac function 
compared to untreated mice with MI. Kidney function 
was assessed by plasma creatinine levels measured in 
blood samples taken at the end of the experiment. Mesala-
zine treatment did not negatively affect kidney function in 
treated mice (Figure S1).

3.2  |  Antifibrotic potential of mesalazine 
treatment in the infarcted heart

Next, we analyzed fibrosis development in mid-ventricular 
whole-heart sections (Figure 3A,B). As expected, MI led to 
significant fibrotic response (Figure 3A, left panel). The 
total fibrotic area, which consisted mainly of the infarct 
scar, as well as interstitial fibrosis, however, remained un-
altered in the mesalazine treated group (Figure 3A, left and 
middle panel). Surprisingly, the analysis of the perivascu-
lar tissue revealed significantly lower levels of perivas-
cular fibrosis, comparable to control levels (Figure 3A,  
right panel). Finally, we performed a gene expression 
analysis of the most relevant cardiac collagens in the con-
text of fibrosis (Collier et al.,  2012; Weber et al.,  2013). 
Compared to MI, we found a significant reduction of col-
lagen 1A1 expression in the mesalazine-treated animals. 
Additionally, there was no significant difference in colla-
gen 1A2 and collagen 3A1 expression in the mesalazine-
treated animals compared to Sham. In contrast, the MI 
animals, which did not receive mesalazine treatment, 

displayed significantly higher collagen 1A2 and collagen 
3A1 expression than Sham (Figure 3C).

4   |   DISCUSSION

MI induces a pronounced transient inflammatory reac-
tion triggering fibroblast activation, which is required for 
effective scar formation and survival (van Amerongen 
et al., 2007). However, when (myo)fibroblast activity re-
mains unremitted, progressive secretion of extracellular 
matrix proteins (ECM) and pro-fibrotic mediators leads 
to spreading of diffuse fibrosis and impaired cardiac per-
formance in the long run (Gibb et al.,  2020). As post-
MI fibrotic remodeling is considered a leading cause for 
subsequent heart failure (Gibb et al., 2020), the discov-
ery of novel antifibrotic pharmacotherapy approaches 
remains a yet unmet medical need. As our previous 
data on repurposed mesalazine indicated significant 
antifibrotic properties in vitro and in vivo (Hoffmann 
et al., 2021; Künzel et al., 2021; Newe et al., 2021), we 
aimed to elucidate, whether systemic mesalazine treat-
ment is sufficient to reduce adverse fibrotic remodeling, 
and alleviate cardiac function and survival after MI.

Compared to solvent control, mesalazine treatment 
had neither adverse nor beneficial effects on cardiac 
function and survival after MI (Figure 2). Although a sur-
vival benefit would be desirable, it is important to note, 
that the critical wound healing phase after MI (Humeres 
& Frangogiannis, 2019; Talman & Ruskoaho, 2016), was 
not impaired either (Figure 2A). Nonetheless, based on 
the initial hypothesis that mesalazine might improve 
adverse structural remodeling following MI, additional 
beneficial effects of mesalazine treatment would ex-
pected to be in long-term nature, that is, slowing the pro-
gression of heart failure, reducing symptoms, improving 
quality of life, and preventing arrhythmias (Heidenreich 
et al., 2022; Ponikowski et al., 2016; Roger, 2013), thus 
providing a secondary survival benefit. Those putative 
long-term benefits remain to be investigated in future 
studies.

While total cardiac and interstitial fibrosis remained 
unaffected by mesalazine treatment, the development 

T A B L E  1   Primer catalogue numbers.

Primer Catalogue number

COL1A1, Mouse qMmuCEP0052648

COL1A2, Mouse qMmuCIP0033742

COL3A1, Mouse qMmuCIP0029022

HPRT, Mouse qMmuCEP0054164

F I G U R E  2   Mesalazine effects on survival, weight development and cardiac function following MI. The bar graphs represent the mean 
values of the indicated study populations normalized to the mean value of the respective control group ± SD. (a) Survival curves after MI 
over a period of 28 d. Animals at the beginning of the experiment: Sham = 8, MI = 11, MI + Mesalazine = 11. p-values were determined by 
Log-rank (Mantel-Cox) test. (b) Mean fluid intake (mL per day). p-values were determined by One-way ANOVA with Holm-Šidák posttest. 
(c) Mean weight development. p-values were determined by One-way ANOVA with Holm-Šidák posttest. (d) Ejection Fraction [%] 28 days 
after MI. p-values were determined by Kruskal-Wallis test with Dunn posttest. n = 4 per group. (e) Fractional Area Shortening [%] 28 days 
after MI. p-values were determined by Kruskal-Wallis test with Dunn posttest. n = 4 per group. (f) Left Ventricular Inner Diameter [μm] 
28 days after MI. p-values were determined by Kruskal-Wallis test with Dunn posttest. n = 4 per group. (g) Representative echocardiographic 
images. All echocardiography parameters were quantified using 2D B-Mode tracings with short- and long-axis.
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of perivascular fibrosis was prevented (Figure 3A). This 
finding was supported by a significant reduction in col-
lagen 1A1 expression, which is considered most relevant 

in cardiac fibrosis (Tallquist & Molkentin, 2017; Weber 
et al.,  2013). Although the detrimental effects of car-
diac fibrosis are known for many years, the impact of 
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perivascular fibrosis on overall cardiac function, and 
patient outcome remained less clear. However, there is 
an emerging role for the perivascular niche in cardiac 

wound healing and scarring as perivascular mesen-
chymal cells have been suggested as a major driver of 
fibrosis in response to injury (Carlo & Peduto,  2018; 

F I G U R E  3   Mesalazine effects after myocardial infarction. The bar graphs represent the mean values of the indicated study populations 
normalized to the mean value of the respective control group ± SD. (a) Quantification of cardiac fibrosis after 28 days of mesalazine or 
control treatment. Left panel: total cardiac fibrosis. p-values were determined by Kruskal-Wallis test with Dunn posttest. n = 4 per group Mid 
panel: total cardiac fibrosis. p-values were determined by One-way ANOVA with Holm-Šidák posttest. n = 4 per group. Randomly chosen 
interstitial areas of the histological section were analyzed and mean values were calculated for each animal. Right panel: Perivascular 
fibrosis. p-values were determined by One-way ANOVA with Holm-Šidák posttest. n = 4 per group. Randomly chosen areas with blood 
vessels present were analyzed and mean values were calculated for each animal. (b) Representative Sirius Red collagen stainings of 
perivascular fibrosis areas. (c) Collagen gene expression analysis using qPCR. HPRT was used as the housekeeping gene. Collagen 1A1: 
p-values were determined by Kruskal-Wallis test with Dunn posttest. n = 4 per group. Collagen 1A2, 3A1: p-values were determined by One-
way ANOVA with Holm-Šidák posttest. n = 4 per group.
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Kramann et al.,  2015). After MI, exaggerated collagen 
accumulation around small-blood vessels contributes 
to tissue hypoxia (Ytrehus et al.,  2018), and promotes 
further diffuse fibrotic remodeling (Künzel et al., 2021; 
Watson et al.,  2014) leading to increased myocardial 
stiffness and diastolic dysfunction (Baum & Duffy, 2011; 
Burlew & Weber, 2002; Frangogiannis, 2021), thus lim-
iting the long-term prognosis of MI survivors (Frango-
giannis,  2017; Talman & Ruskoaho,  2016). Although 
genetic interventions in cells surrounding the macro- 
and micro-vasculature have shown promising antifi-
brotic effects in mice (Kramann et al., 2015), there are 
currently no clinically applicable pharmacological ther-
apies directed at preventing cardiac perivascular fibrosis 
(Ytrehus et al., 2018).

The reason why mesalazine affected perivascular 
fibrosis in particular might be due to the pharmacolog-
ical distribution of the hydrophilic compound. For the 
use of statins after MI, it has been demonstrated that 
the lipophilic atorvastatin offered advantages such as 
increasing left ventricular EF and reducing fibrosis 
marker expression over the hydrophilic rosuvastatin (El 
Said et al., 2021). The authors attribute this observation 
to increased extrahepatic tissue penetration of the lipo-
philic agent (El Said et al., 2021). Similar observations 
were made in the treatment of tuberculosis, in which 
lipophilic antibiotics displayed higher anti-tuberculosis 
activity (Piccaro et al.,  2015). Thus, we hypothesize 
that the bioavailability of hydrophilic mesalazine (Lau 
et al., 2013) might be greater around the blood vessels 
compared to deeper tissue levels and therefore the ob-
served antifibrotic effects were concentrated in the prox-
imity of the cardiac (micro)vasculature.

4.1  |  Potential limitations

Although the effects of mesalazine on perivascular fibro-
sis are intriguing, larger studies will be necessary to vali-
date these findings. Measurements of crosslinked collagen 
and matrix metalloprotease expression could shed further 
light on the mechanisms of mesalazine action in the con-
text of fibrosis and its effects on collagen accumulation. 
Additionally, a continuous drug administration for exam-
ple, with osmotic micropumps (Herrlich et al., 2012) and 
several dosage steps would be preferable to ensure con-
stant mesalazine levels. As myofibroblasts can persist in 
the infarcted heart for several years (Willems et al., 1994), 
and beneficial effects of anti-remodeling drugs are ex-
pected to be in long-term nature, studies looking at later 
time points after MI in aged animals will be necessary to 
determine definitive outcomes of mesalazine treatment 
following MI.

5   |   CONCLUSIONS

The present study is, to the best of our knowledge, the first 
to test the effects of systemically administered mesala-
zine after MI. Although mesalazine did not significantly 
improve survival and cardiac function, perivascular fibro-
sis, which represents a detrimental long-term complica-
tion in cardiovascular patients (Dai et al., 2012), has been 
successfully prevented. Hence, our study confirms previ-
ously observed antifibrotic effects of mesalazine, and adds 
another facet to its antifibrotic spectrum of activity. Our 
results prompt further investigation of mesalazine and its 
derivatives in larger studies as a putative add-on medica-
tion following MI to mitigate adverse fibrotic remodeling.
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